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Results of numerical simulations of the flow of a non-rotatin.g, inviscid, Boussinesq 
fluid over smooth two-dimensional obstacles are described. The fluid has finite depth 
and a rigid lid. Far upstream of the obstacle the horizontal velocity and buoyancy 
frequency are uniform. Comparisons with linear theory for small-amplitude obstacles 
are made and the long-time behaviour is compared with steady-state Long’s model 
solutions. Comparisons with the time-dependent results of Baines (1979) are done. For 
Froude numbers between $ and 1 the obstacle amplitude is varied in order to determine 
the amplitudes needed to initiate wave breaking. These results are compared with the 
predictions of Long’s model and with the experimental results of Baines (1977) 
showing good agreement with the latter. It is found that wave breaking occurs for 
amplitudes significantly lower than Long’s model predicts for a large range of Froude 
numbers. This is shown to be the result of the generation of large-amplitude lee waves 
with wavelengths longer than that of stationary lee waves, but not long enough to 
propagate upstream. The behaviour of these waves is coupled to the generation of both 
longer mode-one waves which do propagate upstream from the obstacle and to mode- 
two waves which propagate against the flow as they are advected downstream. It is also 
coupled to oscillations in the wave drag. The periods of the wave drag oscillations are 
compared to experimental results showing good agreement with cases for which 
oscillations have been observed. The behaviour of these large transient lee waves is 
compared with the theoretical results contained in Grimshaw & Yi (1991), showing 
some similarities. As the Froude number approaches 0.5 the breaking behaviour is no 
longer due to these large waves, with the result that wave breaking occurs much later. 

1. Introduction 
A theoretical understanding of the waves generated by stratified flow over a finite- 

amplitude obstacle is far from complete. After over half a century of study there are 
many laboratory observations that are largely unexplained (Baines 1977, 1979; Castro, 
Snyder & Baines 1990). Understanding the evolving flow field is complicated by a 
number of factors, including strong nonlinearities, particularly in the wave generation 
process, and boundary-layer phenomena. 

The theoretical work to date is exclusively inviscid. A natural question to ask is 
whether an inviscid theory is capable of explaining many of the observed phenomena. 
In most experiments boundary-layer separation in the lee of the obstacle is observed 
along with a turbulent wake. This is a viscous phenomenon and its influence on the 
evolving flow cannot be incorporated into an inviscid theory, though some of its effects 
may be parameterized (e.g. the upstream-propagating disturbances predicted by 
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Janowitz 1981). In experiments where flow separation is not so obvious an inviscid 
theory may be more applicable. 

In spite of the above qualifications an understanding of the role of nonlinearities, 
without the complications of viscosity and its ramifications, in the generation and 
evolution of the wave field is desirable. Toward this goal some numerical calculations 
of the two-dimensional flow of a non-rotating inviscid incompressible Boussinesq fluid 
over smooth obstacles are done here. The fluid layer is of finite depth, with depth H 
far upstream and downstream of the obstacle, and has a rigid lid. Far upstream of the 
obstacle the fluid is assumed to have uniform horizontal velocity U and uniform 
stratification with constant buoyancy frequency N. Model results are compared with 
experimental results. 

Linear theory offers a good framework for discussing the problem and the model 
results. In a fluid of finite depth H with a rigid lid, the vertical structure of the waves 
can be decomposed into distinct modes with a mode-n wave having a vertical 
wavenumber m, = nL7/H. Waves with horizontal wavenumber k have a horizontal 
phase speed 

N 
(kZ + m",: 

C = *  

and horizontal group velocity 
Nmi 

(k2 + mi);  
cg = f 

relative to the fluid. Both IcI and lcgl increase monotonically to 

c, = N / m ,  

in the long-wave limit k + 0. The Froude number, 

is the ratio of the upstream flow speed to the maximum horizontal group velocity. If 
F < l/n then sufficiently long mode-n waves can propagate upstream away from the 
obstacle. In addition, there is a mode-n wave which is stationary with respect to the 
obstacle with horizontal wavenumber 

17 
H 

k ,  = -(A? - 2);. 

Because lcgl < IcI it appears downstream of the obstacle, and hence is called a 
stationary lee wave. 

Long (1953) derived a single nonlinear equation for the streamfunction describing 
steady nonlinear inviscid flow over an obstacle. If the upstream fluid velocity and the 
density gradient are independent of height the equation linearizes (Long 1955). The 
resulting equation, along with its nonlinear boundary condition, is known as Long's 
model. Long made qualitative comparisons of model predictions with experimental 
observations, showing reasonable agreement ; however, large-obstacle cases exhibited 
turbulent eddies in the obstacle lee accompanied by large upstream modifications. 
Implicit in the application of Long's model to problems which initially have uniform 
upstream flow is the assumption that upstream-propagating waves do not modify the 
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incoming flow. This assumption, commonly termed Long’s hypothesis, has been the 
focus of experimental and theoretical studies (Benjamin 1970 ; McIntyre 1972 ; Baines 
1977). See Long (1972) for a review of early work. 

Linear theoretical studies include two approaches. The first approach, culminating 
in the work of McIntyre (1972), is based on the assumption of small obstacle height. 
It uses the small parameter E = a H / H  where a is the amplitude of the obstacle. The 
second approach uses a momentum source to represent the obstacle. Janowitz (1981) 
used this method to calculate steady flows. There are significant differences between the 
predictions of these two models. The first method predicts an O(E) wave train 
propagating upstream from the obstacle. At a given position x the wave amplitude 
decays with time. In contrast, Janowitz’s theory predicts a modification of the 
upstream flow through the generation of large upstream-propagating columnar 
disturbances (waves with k = 0). McIntyre predicted O(s2) columnar disturbances (also 
found by Benjamin 1970) created by nonlinear interactions in the tails of the lee-wave 
train. They propagate upstream only if F < a, suggesting that Long’s hypothesis is 
valid for 2 < F < f. 

Towing-tank experiments indicate that Janowitz’s theory is valid if there is turbulent 
mixing in the lee of the obstacle (e.g. Wei, Kao & Pao 1975; Castro & Snyder 1988; 
Castro et al. 1990. See also Baines 1994). Baines compared experimental results with 
the predictions of Long’s model (Baines 1977) and with those of McIntyre’s theory 
(Baines 1979). He found that the predictions of Long’s model were in poor agreement 
with his experimental results. He attributed this to the invalidity of Long’s hypothesis. 
Experiments using large triangular obstacles were done by Boyer & Tao (1987) who 
focused on the lee-wave field, including its temporal development. They investigated 
the effects of obstacle height and width, showing that narrower obstacles result in 
larger lee waves. 

The only numerical simulations of stratified flow past a smooth obstacle that have 
been done to date are the near-resonant (F  z 1) calculations of Hanazaki (1992) who 
used a Navier-Stokes model with a free-slip boundary condition. Hanazaki (1989) (see 
also Hanazaki 1993) considered the flow of a viscous incompressible Boussinesq fluid 
past a thin vertical flat plate. The Reynolds numbers in his calculations were about 20 
based on obstacle height, significantly lower than typical experimental values of about 
200-3000 (Boyer & Tao 1987). Castro (1994) computed steady-state solutions of the 
same equations for a similar obstacle. He obtained solutions with Reynolds numbers 
as high as 200. These viscous simulations are for situations involving separated 
turbulent wakes, a very different situation from that considered here. 

In this paper the effects of obstacle amplitude on non-resonant, inviscid flows with 
f < F < 1 are investigated. In $2 the numerical model is described. Section 3 contains 
the results: in $3.1 small obstacles are considered; in $3.2 the validity of Long’s 
hypothesis is examined; wave breaking and wave drag are considered in $93.3 and 3.4. 
The results are discussed and summarized in 54. 

2. The numerical model 

dimensions : 
The model equations are the inviscid incompressible Boussinesq equations in two 

u,+ u. vu= - V p - p g + B ( t ) ,  (2.1 a) 

(2.1 b)  pt +up, + wp, = 0, 
u,+w, = 0. (2.1 c )  
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FIGURE 1. A schematic of the computational grid showing the interior and boundary vector points 
(open and solid circles) and the scalar vector points ( x ). The horizontal stretching of the grid far from 
the obstacle is exaggerated. 

Here U is the velocity vector with horizontal and vertical components (u, w), (x, z )  are 
the corresponding spatial coordinates, and V is the gradient operator @/ax, a/az). The 
fluid density is po( 1 + p )  and po(gz + p )  is the pressure (henceforth p and p will be called 
the density and pressure), g is the vector (0,g) where g is the gravitational acceleration 
and B(t) = (BX(t),  0) is a forcing term used to accelerate the flow from rest. 

The equations are non-dimensionalized using the far-upstream velocity U as the 
velocity scale, the fluid depth H far from the obstacle as the lengthscale, and the 
convective timescale H / U .  The equations are solved on a domain bounded below by 
the topography at z = h(x) and above by a rigid lid at z = 1. The inviscid boundary 
conditions are no normal flow at the upper asd lower boundaries and inflow and 
outflow conditions at the left and right edges of the domain. 

The numerical method used is the second-order projection method originally 
developed for a homogeneous fluid by Bell, Colella & Glaz (1989~). This method is 
second order in both time and space, and Bell & Marcus (1992) extended it to a fully 
stratified fluid. The method can be used on structured quadrilateral grids (Bell, 
Solomon & Szymczak 1989 b). The reader should consult these papers for details on the 
method and on the inflow and outflow boundary conditions. The preconditioned 
conjugate gradient routine used by Bell et al. (1989~) for the projection was found to 
be too slow on the grid used here (possibly because of the high aspect ratio of the grid 
cells). A standard tridiagonal block matrix solver (see Golub & Van Loan 1989) was 
used instead. 

In the present case the quadrilateral grid is constructed using terrain-following 
coordinates with higher horizontal resolution in a neighbourhood of the obstacle 
(figure 1). The outflow boundary condition used by Bell & Marcus (1992) did not work 
well. The domain was taken sufficiently large so that waves generated at the 
downstream boundary did not enter the region of interest. No waves hit the upstream 
boundary. Typical calculations have 1 = 600 and M = 40 grid cells in the horizontal 
and vertical respectively in the subregion - 20 < x < 20 with Ax increasing by a factor 
of about 5 between the obstacle crest and x = +20. Higher resolution runs with 
I = 1200 and M = 50 in this subregion were also done. 
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For most of the simulations discussed here the obstacle is a smooth Witch of Agnesi 
profile given by 

a 
z = h(x)  = 

1 + (x/o)2 * 

In this case the only free parameters in the problem are the obstacle amplitude a, the 
width of the obstacle specified by the half-width D and the Froude number F. 

The flow is smoothly accelerated from 0 to 1 at the inflow boundary by using the 
horizontal forcing 

( l / F T ) ( I  -cos(2Ht/FT)), 0 < t < FT;  
BX( t )  = 

10, t > FT. 

A fast startup was used with a forcing time FT = 0.01. This mimics laboratory 
experiments and linear theory which assume an impulsive startup. Tests with FT = 

0.0005 gave virtually identical results. 
The model was tested by verifying that the flow initialized with steady flow solutions 

provided by Long’s model, obtained numerically (Davis 1969), remained steady. 
Further tests included running the model from a state of rest with F = 1.5 for a variety 
of obstacle amplitudes (< 0.25) and widths. Steady states over the obstacle were 
achieved by t = 10. The horizontal velocity profiles above the obstacle crest agreed 
with those given by Long’s model. Further evidence that the model is working correctly 
is provided in 0 3.1 where it is shown that as a + 0 the evolving wave field converges to 
the time-dependent linear solution. 

3. Results 

The horizontal velocity can be decomposed as 
3.1. Small-amplitude results 

Far from the obstacle where h is essentially zero this becomes 

a3 

U = 1 + C. aU&, t )  cos (nI7.z) 
n=l 

(3.1a) 

(3.1 b) 

and U, can unambiguously be identified as a mode-n wave. In the linear regime U, 
is independent of a. In figure 2 numerical results using a Witch of Agnesi profile for 
K = 1.5 and D = 1.6 are compared with the linear solution for different obstacle 
amplitudes a. Linear transient solutions were numerically calculated following Baines 
(1979) (note that his equation A 8 needs to be multiplied by f with corresponding 
changes in A 13). The model results show that linear theory is accurate only if the 
obstacle amplitude is extremely small, i.e. below about 0.01 in this case. As a increases 
the amplitude of U ,  increases. When a = 0.05 both the wave amplitudes and 
wavelengths are larger than linear theory predicts. This leads to a small delay in the 
arrival of the wave crests, but not in the arrival of the wave front. This may be a result 
of the fact that as the obstacle amplitude increases the Froude number over the 
obstacle increases, resulting in energy escaping from the vicinity of the obstacle more 
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FIGURE 2.  Mode-one horizontal velocities Ul(x,  t )  upstream of the obstacle (Witch of Agnesi) at time 
t = 100 for different amplitudes a are compared with linear theory showing good agreement for a less 
than about 0.01. A qualitative difference from linear theory (solid line) occurs for a = 0.13. Here 
K = 1.5 and D = 1.6. Amplitudes are for a = 0.13 (---), a = 0.05 (------), a = 0.01, (. . . . .), 
a = 0.002 (- ’ - .). 

slowly. For a much larger obstacle (a = 0.13) this trend continues but there is now a 
striking qualitative difference as well. A very large leading wave is followed by much 
smaller waves which are growing in amplitude. Figure 3 shows U, for the a = 0.13 case 
after a much longer time. The single large leading wave has evolved into several waves 
of decreasing amplitude. This appears to be a dispersive phenomenon. Following is a 
series of wave packets of much smaller amplitude. 

The propagation speed of the leading wave was determined by following the first 
maximum of U,. This lead wave initially has an upstream propagation speed of about 
0.42 which increases to about 0.49 by t = 80 and to about 0.495 by t = 400, close to 
the linear long-wave value of 0.5. The initial propagation speed is about 5 YO less than 
the linear long-wave speed relative to the water. For different obstacles Baines (1979) 
observed values about 10 YO less. 

Baines (1979) did a number of experiments designed to investigate the efficacy of 
linear theory. His comparisons with linear theory showed striking differences. Some 
model runs using Baines’ obstacle M2 were done in order to see if these differences 
could be attributed to nonlinearities (Baines did not observe any lee-wave separation 
in his experiments with this obstacle). Obstacle M2 was 1.1 cm high and 55 cm long with 
a flat top tapered in the last 3 cm on each end (the model results were insensitive to how 
it is tapered down). The non-dimensional obstacle height is 0.059. Its profile is shown 
in figure 4. 
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FIGURE 3. Mode-one horizontal velocity Ul(x, t )  upstream of the obstacle at t = 650 for a large- 
amplitude obstacle (below the breaking height). Same obstacle (a = 0.13) and value of K as in 
figure 2. 
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FIGURE 4. Obstacle profiles. The solid curve is obstacle M2, a = 0.059. Also shown is the profile 
modified by adding a boundary layer for the case K = 1.59, a = 0.059 (----), as well as a scaled- 
down obstacle used to find the linear response, a = 0.01 (------). 
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FIGURE 5.  Mode-one horizontal velocity U,(x,  t )  upstream of obstacle M2 at t = 26.42 for K = 1.59 
(-). The obstacle lies between x = - 1.475 and x = 1.475. For the case with a boundary layer 
added to the profile (----) the obstacle height is taken as its height at the midpoint (= 0.0836) 
following Baines (1979). Small obstacle results with u = 0.01 (------) and Baines data (- . - .-) are 
also shown. 

Figure 5 shows U ,  upstream of the obstacle for the case K = 1.59 at t = 26.42, the 
same time as Baines reports measurements for. Baines’ measurements, appropriately 
scaled, are included as well as model results for a similar obstacle with an amplitude 
of 0.01. The latter is expected to be a good approximation to the linear solution. The 
leading depression in U,  is very similar in size and width to that in the observations, 
however its position agrees with the predictions of linear theory and is well ahead of 
the experimentally observed wave front. U ,  then briefly changes sign, in contrast to the 
observations, before attaining a relatively constant negative value between x = - 7 and 
x = - 3.  In the observations a flat region of similar length is seen at  approximately the 
same location with a value about four times as large. 

As pointed out in Baines (1979), the thickness of the boundary layer on this obstacle 
is very significant, about 30-35 % of the obstacle height at the obstacle midpoint. Some 
model runs were done using an obstacle profile modified by adding a boundary layer. 
The formula for the thickness of a steady-state boundary layer on a flat plate is used 
as an approximation. The new profile is given by 

( 3 4  

for x1 < x < x,, where xL and x, are the left and right edges of the obstacle and h,,(x) 
is the obstacle profile. Behind the obstacle the new profile is given by 

( 3 . 3 )  

That is, the boundary layer is assumed to stop growing and remain constant in 
thickness downstream of the obstacle. In the experiments the boundary-layer thickness 
would have decreased as the fluid flowing off the back of the obstacle was accelerated 
because of the bottom boundary condition (the obstacle was towed along the bottom 
of the tank). In general, boundary-layer separation or thickening could occur under 
lee-wave crests due to adverse pressure gradients and reduced flow speeds. This may 

h(x)  = h,,(x) + 1 . 7 2 ( ~ ( ~  - XJ); 

h ( ~ )  = 1.72(v(~, - XJ);. 
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effectively extend the boundary-layer wake in the downstream direction. In Baines’ 
experiment the buoyancy frequency was N = 1.05 SK’ (personal communication) so 
that for K = 1.59 the value of the non-dimensional viscosity v is about 0.000 139. This 
corresponds to a Reynolds number, based on the obstacle height, of about 428. The 
modified profile is included in figure 4. 

The results obtained using this modified profile are included in figure 5. Following 
Baines (1979), the value of a used in ( 3 . 1 ~ )  is the height of the obstacle plus the 
boundary-layer thickness at the midpoint x = 0. In this case this sum is 0.0836 (it varies 
with K ) .  The most noticeable modification to the upstream profile of U, is that it has 
been shifted down. This is due to the upstream-propagating columnar disturbance 
generated by the permanent change in fluid depth downstream of the obstacle. In 
experiments in which the obstacle is towed along the bottom of a tank the boundary 
layer, as discussed above, will get thinner, possibly negating the columnar disturbance. 
If the obstacle is towed along the top of the tank the thinning of the wake will take 
much longer so that experimental results obtained with surface- or bottom-mounted 
obstacles could differ. The flat part of curve centred at x z -5 is now comparable 
in magnitude to the corresponding feature in the experiments. It is a transient 
phenomenon. 

Comparisons with Baines’ results for other values of K were also made, showing 
similar agreements and differences. In all cases, the vertical profile of the horizontal 
velocity above the obstacle more closely resembled the linear solutions shown by 
Baines (1979) than they did the experimental values. 

3.2. Long’s hypothesis 
Baines (1977) concluded that Long’s hypothesis is invalid because upstream columnar 
disturbances are generated. These conclusions were based on the large discrepancies 
between predicted and observed horizontal velocity profiles above the crest of the 
obstacle. An unanswered question is the cause of the upstream-propagating 
disturbances. Were they due to nonlinear effects as suggested by Castro et al. (1990) or 
viscous effects (including flow separation)? Baines (1977) did not observe a wake in his 
experiments. 

In order to test the possibility that the invalidity of Long’s hypothesis is due to 
nonlinear effects one very long time run was done. Figure 3 shows Ul(x,  t )  at t = 650 
for K = F1 = 1.5 obtained using a Witch of Agnesi obstacle with a half-width D = 1.6 
and an amplitude a = 0.13. The amplitudes aU, of the waves just upstream are 
extremely small, being below 0.013 within a distance of 120 of the obstacle. The wave 
amplitudes do not appear to be decaying. The horizontal velocity profiles through a 
vertical line above the obstacle crest oscillate in time about the Long’s model solution 
(figure 6). These small oscillations do not appear to be decaying with time. 

The numerical results suggest two things for inviscid flows. First, a steady state is 
achieved only after a very long time, if ever. Second, Long’s hypothesis is valid in the 
sense that after an initial transient period the flow field exhibits very small oscillations 
about Long’s model solution. 

The model results should be contrasted with the experimental observations of Baines 
(1977). Using a much narrower Witch of Agnesi obstacle (D w 0.19) with similar 
amplitude (a = 0.12) he found poor agreement with Long’s model. The elapsed time 
between the start of the experiments and the observations is not given. Taking the 
stated typical fluid depth of 0.3 m, total density difference of 0.4%, and upper bound 
on the towing times of 200 s, the non-dimensional towing time is about 15 for K = 1.5. 
The largest upstream-propagating wave in the numerical calculation (the peak of just 
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FIGURE 6. Horizontal velocity profiles above the obstacle crest at various times are compared with 
Long’s model solution. Obstacle and value of K as in figure 3. At the bottom of the plot the curves, 
going from left to right, are for t = 620, 630, 610, 640, 600 and 650. Order is reversed at top. 
Superimposed (solid curve) is Long’s model solution which is almost identical to the model result at 
t = 640. 

under 2.5 in figure 3) is generated at a non-dimensional time of about 30. This suggests 
that a steady state may not have been achieved. Alternatively, viscosity could account 
for the generation of upstream-propagating disturbances in one of two ways : flow 
separation in the lee of the obstacle with a wake too small to be seen, or through an 
effective change in fluid depth due to a boundary layer as discussed in $3.1.  

3.3. Wave breaking 
Baines (1977) compared the occurrence of wave breaking (overturning), transient or 
otherwise, in his experiments with the predictions of Long’s model. Using smooth 
Witch of Agnesi obstacles he found that wave breaking usually occurred at obstacle 
amplitudes well below the breaking amplitude predicted by Long’s model for F < 1. 
The exception was for K = F1 very close integer values. In those cases breaking was 
not observed, even at amplitudes well above the breaking value given by Long’s model. 
A series of calculations were done in order to investigate this for f < F c 1. 

As the obstacle amplitude a is increased from small values a critical amplitude ab is 
reached above which waves break; ab depends on the Froude number F and on the 
obstacle width D. The breaking amplitude abL predicted by Long’s model is quite 
sensitive to D when D is small. For example, for F = 0.826, abL has values of 0.196 and 
0,145 for D = 0.095 and 0.20 respectively. In Baines experiments D ranged between 
0.13 and 0.3. Values for the individual data points shown by Baines (his figure 1) are 
not given. 

Figure 7 shows abL as a function of I; for D = 0.17. The hydrostatic breaking 
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FIGURE 7. Breaking results for Witch of Agnesi obstacles. The triangles connected by the solid curve 
are breaking amplitudes predicted by Long's model for D = 0.17 computed to within & 0.001, The 
dashed curve is the breaking amplitude given by the hydrostatic Long's model. Solid circles represent 
model runs for which breaking waves were observed, with the breaking time t indicated. Open circles 
represent cases for which breaking waves were not observed, with the model run time indicated. 
Baines (1 977) experimental results are included, with solid/open squares for breaking/non-breaking 
cases. In the model runs D = 0.17 while in the experimental results D varied between 0.13 and 0.3. 
Model runs are for F = 0.505, 0.55, 0.666, 0.826 and 0.95. 

amplitude determined using the hydrostatic Long's model (Long 1955) is included 
(dashed curve). Numerical results for D = 0.17 are also shown. Solid/open circles 
represent breaking/non-breaking cases. Also shown are Baines' results (squares) : all 
the breaking cases (solid squares) lie above the hydrostatic breaking amplitude curve 
while all the non-breaking cases (open squares) are below it or are close to F = 0.5. 
Baines' results should not be compared to the solid curve as the obstacle widths differ. 

The general pattern of the numerical results concur with the experimental results of 
Baines (1977). Breaking occurs for a well under abL except when F is close to 0.5. In 
addition note that breaking occurs if the obstacle amplitude is above the hydrostatic 
breaking amplitude except for F z 0.5 (and possibly 1). The predicted dip in the 
breaking amplitude near F = 0.5 does not seem to occur. 

The reason for the rapid onset of breaking is due to the same mechanism for all cases 
with F 2 0.55. As an example consider F = 0.826. Breaking occurred in distinct 
locations in an ordered manner. Each of these separate occurrences will be called a 
breaking event. Increasing the resolution changed the details of the flow after the first 
occurrence of breaking. The qualitative features, including the locations and times of 
the breaking events, were unchanged. 

Model simulations give a breaking amplitude ab between 0.09 and 0.10 whereas 
abL = 0.157. The hydrostatic breaking amplitude is 0.086. For values of a 2 0.15 the 
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FIGURE 8. Density contours for the case (a, F, D) = (0.13, 0.826, 0.17). High-resolution run 
(see $2). (a) t = 35, (b) t = 40. 

first strong breaking event occurs near the upper boundary in the centre of the first 
trough of the isopycnals just downstream of the obstacle (location L1, see figure 8). 
For a = 0.15 overturning begins at t = 20 and is well developed by t = 25. A second 
breaking event starts at t M 30. This time it is at the bottom boundary under a large 
crest (location L2). This result is typical of cases with a 2 0.15. As a is increased 
the overturning occurs earlier, becomes stronger and the first event becomes more 
dominant. As a decreases, the strength of the first overturning event at L1 decreases 
considerably. The second breaking event at L2 becomes stronger. Figure 8 shows a 
series of density contour plots for a = 0.13. Between t = 25 and 30 weak short-lived 
overturning occurs at location L1. At t = 35 overturning has started at location L2. It 
is well developed by t = 40 at which time overturning is just about to occur near the 
top of the domain in the second trough (location L3). At t = 45 the overturning region 
at L2 has collapsed while that at L3 is well developed. By t = 50 there is again strong 
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FIGURE 9. Plots of aU,(x, t )  (a, c and e) and aU,(x,  t )  (b, d and f )  at various times for the case 
(a,F,D)=(0.13,0.826,0.17).Curves-, . . . .  > >  - - - -  - . - . ~ . ~ .  are for times I = 5, 10, 15, and 
20 respectively in (a)  and (b) ;  t = 20, 25, 30, 35 in (c) and (d ) ;  and for t = 35,  40, 45, and 50 in (e) 
and (f) .  

overturning near the bottom, now in the second crest (location L4). As a is decreased 
still further, the strength of the strongest breaking event decreases and the position of 
the first breaking event moves downstream. The result is that for a = 0.10 the first 
breaking event occurs at about t = 60 at location L4 (in this case at x M 7 ) .  

Plots of aU, and aU, for various times are shown in figure 9 for the case a = 0.13. 
Plots are very similar for the case a = 0.10, which did not break until t > 55. The 
amplitudes of the higher-mode waves are much smaller. Recall that the identification 
of U,  with a mode-n wave becomes invalid close to the obstacle. For a = 0.13 the slope 



14 K. G .  Lamb 

of the obstacle has a magnitude slightly less than 0.01 at x = k0.9, so this identification 
is quite good at this distance. The obstacle has its maximum slope at k D/35 z k 0.1. 
The small sharp peak-dip seen in the figures is centred at this location. 

A large mode-one wave is seen to develop just downstream of the obstacle. Since the 
contribution to the horizontal velocity from a mode-one wave is aUIcos(l7z), 
overturning occurs near the top when aU, becomes larger than 1 and near the bottom 
when aU, becomes less than - 1. The value of aU, exceeds 1 by t = 0.25 at x z 0.75. 
After this, the wave grows slightly and then dramatically decreases in amplitude in 
conjunction with a large-amplitude wave of positive U ,  leaving the obstacle to 
propagate upstream. After the mode-one lee wave collapses, it grows again and then 
collapses as a second mode-one wave leaves the obstacle to propagate upstream. Every 
time the mode-one lee wave grows renewed breaking is possible. 

The minimum of U, at x z 2.2 (location L2) also grows rapidly, dipping to - 1.2 at 
t = 35. Note the stronger breaking seen in figure 8(b) at this location. After t = 40 the 
amplitude suddenly decreases in magnitude while the amplitudes of the next maximum 
and minimum of U, grow rapidly, leading to overturning in locations L3 and L4. This 
case was only run until t = 50. It appears that breaking will occur farther and farther 
downstream at later times. 

The large-amplitude mode-one waves downstream of the obstacle have a slight 
upstream phase velocity. This can be explained using linear theory. The wavelength of 
the stationary lee waves is A, = 2.93. The horizontal group velocity relative to the 
obstacle is negative only if the wavelength is greater than about 5.42. The peak-to-peak 
distance of the large waves just downstream of the obstacle varies somewhat but is 
always larger than A,. For the a = 0.10 case (non-breaking for t < 50), the distances 
between the first and second peaks in U, are about 3.34, 3.4, 3.32 and 3.13 for t = 20, 
25, 30 and 35 respectively. Thus, linear theory predicts that these waves have negative 
phase velocities and positive group velocities, as is observed. Taking A = 3.34 as a 
representative case the group velocity is 0.24, a value in good agreement with what one 
would estimate from figure 9. Lee waves with wavelengths larger than the wavelength 
of stationary lee waves predicted by linear theory were observed by Boyer & Tao (1987) 
in their experiments. 

A long mode-two wave of positive amplitude develops downstream of the obstacle 
(figure 9). Its propagation speed downstream is that of a long mode-two wave 
propagating against the flow. It will slightly weaken the breaking in the top and bottom 
quarters of the domain and enhance it in the middle half. An examination of the mode- 
two waves over longer times shows that a depression in U, leaves the obstacle at the 
same time as an upstream-propagating elevation of U,  does. Figure 10 shows U,, U,  
and U, at t = 50 for the case (K,a) = (1.5,0.12). The large positive values of U, just 
downstream of the obstacle has collapsed for the fourth time. Four large mode-two 
waves can be seen downstream of the obstacle with the fourth depression just leaving 
it. Four elevations of U, can be seen upstream of the obstacle. A similar pattern in U,  
is not apparent. 

Movies of the evolving waves have been made which clearly show a lee wave 
attached to the downstream side of the obstacle. This lee wave has an oscillating 
amplitude. Waves farther downstream with an upstream phase velocity do not always 
propagate all the way up to the obstacle, although they can propagate a considerable 
distance upstream before losing their identity. The amplitude of the oscillation of the 
lee wave attached to the obstacle may increase with time. This happens for the case 
shown in figure 10 as can be deduced from the growing amplitude of the upstream- 
propagating waves. This is why breaking occurred after such a long time when (K, a) = 
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FIGURE 10. U ,  (-), U,  (---) and U, (-----) at t = 50 for the case (K,a) = (1.5,0.12) and 
D = 0.17. The four oscillations of U, upstream of the obstacle (at x = 0) match with four large 
oscillations in U, downstream of the obstacle. The large positive value of U, immediately downstream 
of the obstacle has just collapsed. Coupled to this, a large mode-one wave (positive U,)  has just left 
the obstacle to propagate upstream and a depression in U,, propagating against the flow, has just left 
the obstacle and is being advected downstream. 

(1.5,0.14). In this case the eighth oscillation of the lee wave was large enough to 
break. For (K, a)  = (1.5, 0.16) breaking occurred the second time this lee wave grew in 
amplitude. For the case (K, a) = (1.5,O. 12) this growth had stopped and was decreasing 
by t = 180. It seems that breaking would never occur for this case. Note the difference 
between these cases and the case shown in figure 3 which has the same Froude number 
and a similar amplitude but a much wider obstacle. This indicates that the obstacle 
width is an important parameter. For the case with (F, a)  = (0.826,0.09) breaking had 
not occurred by t = 300. The amplitude of the oscillations of the attached lee wave was 
still growing, hence breaking could have eventually occurred. 

The hydrostatic breaking curve appears to be an approximate boundary separating 
the region where breaking occurs during the first growth of the lee wave attached to 
the obstacle from the region where breaking first occurs in subsequent oscillations of 
this lee wave. Exceptions to this are for Fclose to 0.5 or to 1. The apparent significance 
of the hydrostatic breaking amplitude for the obstacle width used in these model runs 
may be coincidental. 

The coupling of the mode-one and mode-two waves leaving the obstacle suggests a 
nonlinear mechanism, possibly with interaction with the obstacle, self-interaction of 
the mode-one wave, and interaction between the mode-one and mode-two waves. A 
partial theoretical explanation for the generation of these large-amplitude waves may 
be provided by the work of Grimshaw & Yi (1991) (henceforth GY). They derived an 
evolution equation for the flow of a weakly stratified fluid over an obstacle when the 
flow is near resonance (that is, F z 1). In their figure 10 two cases in the Boussinesq 
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limit are shown. Large waves with negative phase speeds are seen downstream of the 
obstacle. In one case they break and in the other they do not. As pointed out by Baines 
(1994), the difference between these two cases can be characterized by the value of 
P = (F-  l ) / a .  Using equations (2.15b), (3.1) ( 3 . 5 ~ )  and (4.2) of GY we find that for the 
breaking case P = -4/U M - 1.27 while for the non-breaking case P = - 12.5/17 M 
-3.98. In the limit F+ 1- the hydrostatic breaking curve is asymptotic to the 
straight line a = &(l -F) .  Thus, in the breaking case a lies above the hydrostatic 
breaking curve, while in the non-breaking case a is below it. 

In the breaking case shown in GY breaking occurs quickly, before the first upstream- 
propagating wave has left the obstacle. Extrapolating along the line P = - 1.27 we find 
that, for F = 0.826, a is 0.137. For an amplitude of 0.14 the numerical results show that 
strong breaking first occurs immediately downstream of the obstacle, just as in GY, 
between t = 20 and 25. The non-dimensional breaking time of 7.7 reported in GY is 
equal to about 5 of the model time units for this case. The obstacle used in GY was, 
however, much wider and had a different shape than the obstacles used in the above 
model runs. Some model runs were done using the same obstacles as used by GY. This 
obstacle is given by 

h(x) = aexp (- 0 . 0 9 ~ ~ ~ ) .  (3.4) 
When F = 0.826, a M 8.59. In this case breaking first occurred between t = 13 and 14, 
aImost three times later than the breaking time given by GY. When F = 0.95 we have 
a M 2.47 and a M 0.04. Breaking now occurred at a time between t = 80 and 84. This 
is slightly more than twice the breaking time given in GY, which is about 37 model time 
units. Thus, the breaking time in the model runs is about two or three times larger than 
the time given by Grimshaw & Yi’s equation, with better agreement closer to 
resonance. 

In the non-breaking case shown in figure 10 of GY, three waves can be seen 
propagating upstream from the obstacle. The first and second appear to leave the 
obstacle in conjunction with a large wave collapsing just downstream of the obstacle, 
as in the numerical results. After the second of these has collapsed the waves 
immediately downstream of the obstacle are much smaller in size and appear to be 
stationary. 

The theoretical results of GY do not involve nonlinear interactions between modes 
and hence do not provide an explanation for the generation of the mode-two waves. 
The mode-two wave has a positive horizontal velocity at the top of the domain and 
hence inhibits overturning. This may partly account for the longer breaking times in 
the model. The theory also does not explain why the oscillations of the lee wave 
attached to the downstream side of the obstacle may grow in amplitude in some cases. 

The above discussion of the evolving wave field is applicable for F between about 
0.55 and 1. As Fincreases to 1 the upstream group velocity goes to zero and the wave 
field evolves on a slower timescale resulting in increased breaking times. Because of the 
extremely slow evolution of the wave field for F = 0.95 it is difficult to look at this case 
in as much detail as for the smaller F values. In this case breaking was observed only 
after very long times at location L1. For F = 0.55 the breaking occurring for a = 0.2 
and 0.18 is unusual. It occurs slightly below the middle of the domain at x % 4 where 
a mode-one wave and mode-two wave combine to produce overturning. F = 0.55 
appears to be in a transition region between the different behaviour that occurs for 
smaller and larger values of F. 

The evolution of the flow is very different when F = 0.505. This is well illustrated by 
the case with a = 0.2 > abL = 0.1945. Large mode-one waves downstream of the 
obstacle are no longer present. Breaking occurs at t x 30 because of a very slowly 
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FIGURE 11. The wave drag for the long time run for which U ,  is shown in figure 3 at t = 650. The 
number of oscillations in the wave drag and in the number of wave upstream of the obstacle is the 
same. Note the similarity in the variation of the amplitude of the wave drag and upstream waves. 

strengthening mode-two wave over the obstacle. This suggests a gradual evolution to 
Long’s model solutions, with breaking occurring whenever a > abL. Because of the 
length of time required for breaking it was not observed by Baines (1977). 

3.4. Wave drag 
The time dependence of the wave drag (= j ph’ (x )  dx) shows an oscillatory behaviour, 
with one oscillation for each wave that has propagated upstream from the obstacle. In 
figure 11 the wave drag for the long-time run shown in figure 3 is shown. A qualitative 
agreement between the variation in wave drag amplitude and the variation of the 
amplitude of the upstream waves is apparent. Wave drag is at its maximum when the 
fluctuating lee wave just downstream of the obstacle has its peak value of U,. 

The wave drag varies approximately periodically with time. The period is 
independent of the obstacle amplitude with approximately constant minimum values, 
slightly below zero, and with maximum and average values increasing with obstacle 
amplitude. The amplitude of the wave drag oscillations also appears to be independent 
of K for fixed a. Figure 12 shows the period of the wave drag oscillations as a function 
of K. As K+ 1 the period goes to infinity (e.g. for K = 1.05 the period is about 320). 

Castro et ai. (1990) did a number of towing-tank experiments with bluff obstacles. 
They noted that for K between 1.5 and 2.0 there were non-decaying periodic 
fluctuations in the measured drag on the obstacle. The measured periods varied slightly 
depending on the obstacle, decreasing roughly linearly from a value of about 13 at 
K = 1.5 to between 6 and 8 at K = 2.0. The present numerical results show a period 
of about 12.25 for K =  1.5 which decreases to about 9.75 at K =  1.67 after which it 
appears to remain steady. Thus, the agreement in the wave drag periods is quite good, 
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in spite of the fact that in the experimental cases there was boundary-layer separation 
and a wake attached to the obstacle. 

The presence of wave drag oscillations for K < 1.5 differs from the experimental 
results. It is possible that in the experiments these oscillations were damped out by the 
turbulent mixing. The numerical result that the oscillation period goes to infinity as 
K+ 1 is expected because as K+ 1 the propagation speed with respect to the obstacle 
decreases and the minimum wavelength of upstream-propagating waves increases. 
Using the long-wave propagation speed the oscillation period at a fixed point x is 
h / (K-  l), where h is the wavelength. Model results show that the oscillation period has 
an approximate (K-  l)-' behaviour in the mid-range of K values. For K 1.65 the 
periods are independent of K. This requires h - K -  1 as K+ 2. For values less than 
1.2-1.3 the model period increases more rapidly than (K-  l)-l, a result of the larger 
wavelengths. 

4. Discussion and conclusions 
The evolution of the wave field generated by flow over a smooth two-dimensional 

obstacle has been investigated. The fluid has a rigid lid with a depth of unity far from 
the obstacle. Starting from a state of rest and uniform stratification the flow was 
smoothly accelerated over a very short time interval to a constant uniform speed 
u = 1 far from the obstacle. The startup mimics an impulsive start. A smooth narrow 
Witch of Agnesi shaped obstacle with a fixed width was used for most model runs. 
Only Froude numbers between 0.5 and 1 have been considered. 

It was found that linear theory accurately predicts the amplitude of the upstream- 
propagating waves only if the obstacle amplitude is very small (below 0.01 for the case 
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considered). As a is increased the upstream-propagating waves become larger than, 
and slightly lag, those predicted by linear theory. The position of the wave front agrees 
with linear theory for all cases run. For large-amplitude obstacles there is a significant 
qualitative difference in the variation of the wave amplitudes. In general, a packet of 
large-amplitude waves precedes much smaller amplitude waves. The wave amplitude 
does not appear to go to zero as t + 00 as linear theory predicts. 

Comparisons with the experimental results of Baines (1979) for very small-amplitude 
obstacles were also done. For this purpose Baines’ obstacle M2 with a non-dimensional 
amplitude of 0.059 was used. The numerical results agreed well in some aspects when 
the obstacle profile was modified by adding a boundary layer which retained a constant 
thickness downstream of the obstacle. Specifically, a flat region of negative U, (defined 
in (3.1 a)) near the obstacle is seen at t = 26.42, with similar magnitudes and length in 
the experiments and numerical simulations. These flat regions are transient in the 
numerical simulations. The position of the wave front upstream of the obstacle is 
identical in the numerical results and in linear theory. The wave front in the 
experiments is delayed significantly for some unknown reason (presumably a viscous 
phenomenon). 

One long-time run was done. Following a transient startup period, with large- 
amplitude oscillations, a periodic state with small non-decaying oscillations about 
Long’s model solution was reached. In contrast, the experimental results of Baines 
(1977) showed poor agreement with Long’s model. This is believed to be due to viscous 
effects, in particular boundary-layer separation and a wake, which results in the 
generation of an upstream-propagating disturbance. The numerical results also suggest 
that the experimental observations were taken during the initial transient period of 
large-amplitude oscillations, before a final steady state was achieved. The implication 
of this run is that idealized inviscid flow approaches a state comprised of small 
oscillations about Long’s model solutions, provided that breaking has not occurred in 
the transient phase. 

An investigation into the obstacle amplitudes required for breaking was also done. 
It was found that transient breaking generally occurred for amplitudes well below the 
value predicted by Long’s model due to the generation of very large transient mode- 
one waves downstream of the obstacle. For large-amplitude obstacles breaking first 
occurred at the top of the domain slightly downstream from the obstacle. At later 
times, it occurred farther and farther downstream at locations alternating between the 
bottom and top of the domain. As the obstacle amplitude was decreased the strength 
of the first breaking event decreased and ultimately disappeared. The strengths of the 
subsequent breaking events also decreased but more slowly so they could be stronger 
than the first breaking event. Breaking at a given location may occur repeatedly due 
to an oscillating attached lee wave. For F close to 0.5 the behaviour is qualitatively 
different. Breaking occurs for obstacle amplitudes larger than the breaking amplitude 
predicted by Long’s model only after a long time, due to a slowly strengthening mode- 
two wave above the obstacle. These results agree with experimental observations 
(Baines 1977) which showed wave breaking for obstacles amplitudes well below those 
predicted by Long’s model except for F1 close to integer values. 

The large-amplitude transient waves which resulted in wave breaking are mode-one 
waves with an upstream phase velocity and a downstream group velocity. As F 
decreases, their wavelength and amplitude decreases. A dominant wavelength does not 
exist if F is much smaller that I .  

Immediately downstream of the obstacle there is a lee wave attached to the obstacle 
with a periodically varying amplitude. As its amplitude decays (i.e. U, decreases) a 
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mode-one wave of positive U,  leaves the obstacle to propagate upstream. At the same 
time a mode-two wave with a negative value of U ,  leaves the obstacle. It propagates 
against the flow while being advected downstream. This process repeats periodically. 
Wave breaking occurs near the top of the domain just downstream of the obstacle 
when U ,  is sufficiently large. If breaking does not occur in the first cycle it may occur 
in subsequent ones as the peak amplitude of the attached lee wave may grow over 
several cycles before decaying. 

The wave drag oscillates with the attached lee wave. The wave drag period is 
independent of the obstacle amplitude and varies with K = F’, increasing from about 
10 to infinity as K decreases from 2 to 1. The values agree quite well with the 
experimental results of Castro et al. (1990) for K >  1.5. In both the numerical and 
experimental results the amplitude of the oscillations does not appear to decay with 
time. For K < 1.5 the experimental results showed no oscillations in the wave drag. 
These experiments used bluff obstacles, including a two-dimensional fence and a very 
narrow Witch of Agnesi profile, for which there was flow separation in the obstacle lee. 
This makes the similarity of the numerical and experimental results all the more 
striking. In the experiments with K < 1.5 the longer-period oscillations may have been 
damped out by turbulent mixing in the wake. 

Castro et Q I .  (1990) discussed possible mechanisms for the cause of the periodic 
oscillations of the wave drag. One suggestion was that the variations in wave drag were 
a consequence of variations of the effective value of Kupstream of the obstacle. In their 
experiments, significant upstream columnar disturbances were generated. For K > 1.5 
the amplitude, d, of the columnar disturbance decreases with K. An oscillation sets in, 
as the presence of a columnar disturbance implies an increase in the wave propagation 
speed which increases the effective value of K. This decreases A ,  which in turn reduces 
the effective value of K ;  d then increases again. This gives rise to periodic variations 
in the strength of the columnar disturbance and of the wave drag. 

In the current inviscid simulations there are no columnar disturbances which 
permanently modify the upstream flow conditions. In the light of these inviscid 
calculations, a more appropriate interpretation of Castro et d ’ s  results is that 
suggested by Baines (1 994). An upstream columnar disturbance is generated because 
of the momentum source associated with the wake attached to the lee of the obstacle. 
Oscillations of the wave drag are due to waves superimposed on the columnar 
disturbance. 

Another possible mechanism suggested by Castro et ul. (1990) was that it is a 
nonlinear process governed by a forced KdV-type equation. They discarded this 
possibility because the theoretical work of Grimshaw & Smyth (1986) showed that for 
uniform stratification the nonlinear self-interaction term vanishes. Grimshaw & Yi 
(1991, GY) have since derived a new KdV-type nonlinear evolution equation for near- 
resonant flow (i.e. F = l/n) in the weakly stratified (% Boussinesq) limit which 
describes several features of the numerical simulations. Specifically: (i) for slightly 
subcritical flow (i.e. F slightly less than 1) it predicts breaking lee waves for obstacle 
amplitudes above the hydrostatic breaking amplitude; (ii) solutions have lee waves 
with an upstream phase velocity ; (iii) the emergence of upstream-propagating waves 
appears to be coupled with the collapse of a large lee wave just downstream of the 
obstacle. Thus, GY’s equation describes some of the salient features of the evolution 
of the mode-one wave seen in these numerical solutions for cases which are far from 
resonance, have narrow obstacles, and are strongly nonlinear. The similarity with GY’s 
solutions improves as F+ 1 .  The numerical result that the behaviour is different near 
F = 0.5 may appropriately be viewed as F being farther from resonance (F  = 1) rather 



Stratijied inviscid f low over a smooth obstacle 21 

than close to 0.5. The mode-two waves may be a result of the intei action of the mode- 
one waves with the obstacle and of the self-interaction of the mo le-one waves. They 
act to inhibit breaking and may partially account for the longer breaking times 
obtained in the model results, which are about two to three times longer than 
predicted by GY. Another possible explanation for the earlier bre iking found by GY 
is that their theory is in the wide-obstacle limit. Model results inclicate that breaking 
occurs more rapidly as the obstacle width is increased. 

This work was funded by grants from the Natural Scienccs and Engineering 
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